ÇÐȸ»ó ¼ö»ó°­¿¬
2021³âµµ POSCO Çмú»ó ¼ö»óÀÚ

Ȳ³ó¹® ±³¼ö

¼­¿ï´ëÇб³ CV
4¿ù 29ÀÏ(¸ñ) 18:00-18:15

Challenge of Puzzling Microstructural Evolutions

Four puzzling microstructures evolved in the direct synthesis of monodisperse nanoparticles, in abnormal grain growth of ceramics, in secondary recrystallization of metals and in the synthesis of diamond films by chemical vapor deposition (CVD) were challenged. Firstly, diffusion-controlled growth of nanoparticles without renucleation and coalescence was shown to be responsible for the evolution of monodisperse nanoparticles. This result helped Prof. Taekhwan Hyeon to synthesize monodisperse nanoparticles in an ultalarge scale, whose paper has been cited almost 4000 times. Secondly, coarsening by 2-dimensional nucleation of the faceted grains with the singular interface was shown to be responsible for abnormal grain growth in ceramics. This problem has been unsolved and remained puzzling since 1950s. Thirdly, sub-boundary enhanced solid-state wetting was shown to be responsible for the secondary recrystallization in metals. This problem has been unsolved and remained puzzling since 1935. Fourthly, the deposition of diamond films on the silicon substrate and of porous and skeletal soot on the iron substrate under the exactly same environment was explained by invisible charged nanoparticles generated in the gas phase with their subsequent deposition into diamond films. This new mechanism of thin film and nanostructure growth, which is called the theory of charged nanoparticles (TCN) or non-classical crystallization, turned out to be very general in CVD and some PVD processes. Since conventional textbooks described the growth of thin films and nanostructures in CVD and PVD typically improperly by the terrace-ledge-kink mechanism based on the growth by atomic, molecular or ionic unit, a new textbook, titled ¡®Non-Classical Crystallization of Thin Films and Nanostructures in CVD and PVD Processes¡¯ was published in 2016 in Springer publishing company.

2021³âµµ LSÇмú»ó ¼ö»óÀÚ

ÃÖöÁø Ã¥ÀÓ¿¬±¸¿ø

Çѱ¹Àç·á¿¬±¸¿øCV
4¿ù 30ÀÏ(±Ý) 10:40-11:05

ºñÈñÅä·ù°è ¿µ±¸ÀÚ¼® ¼³°è ¹× Á¦Á¶±â¼ú °³¹ß

¿µ±¸ÀÚ¼®¼ÒÀç´Â Àü±âÀû ¿¡³ÊÁö¿Í ±â°èÀû ¿¡³ÊÁö¸¦ »óÈ£ º¯È¯½ÃÅ°´Âµ¥ ÇʼöÀûÀÎ À¯ÀÏÇÑ ¼ÒÀçÀ̸ç, »ê¾÷ÀûÀ¸·Î °íÈ¿À² ¸ðÅÍ, Generator µî¿¡ ±¤¹üÀ§ÇÏ°Ô È°¿ëµÇ°í ÀÖ¾î, ƯÈ÷ Â÷¼¼´ë ÀÚµ¿Â÷, ¿¡³ÊÁö Àý°¨Çü °¡ÀüÁ¦Ç°, ½ÅÀç»ý ¿¡³ÊÁö »ê¾÷ÀÇ Áß¿ä ±â¹Ý¼ÒÀçÀÌ´Ù. ÇÏÁö¸¸ ÀÚ±âÀû Ư¼ºÀÌ ¿ì¼öÇÑ ±âÁ¸ ÈñÅä·ù ¿µ±¸ÀÚ¼® ¼ÒÀç´Â ÁÖ¿ä ¼öÃâ±¹ÀÎ Áß±¹ÀÇ ÀÚ¿ø ÆíÁß¼º ¹× Àü·«ÀûÀÎ ¼öÃâ Á¦ÇÑ Á¤Ã¥À¸·Î ÀÎÇØ ¼ö±ÞºÒ±ÕÇüÀÌ ½É°¢ÇÏ°í, °¡°ÝÀÌ °¡Æĸ£°Ô »ó½ÂÇÏ´Â µîÀÇ Ãë¾à¼ºÀÌ ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó ¿Âµµ¿¡ µû¸¥ ¿­È­ Ư¼ºÀÌ Å©±â ¶§¹®¿¡ 200oC ÀÌ»óÀÇ ¿Âµµ¿µ¿ª¿¡¼­ ¾ÈÁ¤ÀûÀÎ »ç¿ë¿¡´Â ¸¹Àº Á¦¾àÀÌ ÀÖ´Â ½ÇÁ¤ÀÌ´Ù. µû¶ó¼­ ºñÈñÅä·ù ¿ø¼Ò ±â¹ÝÀÇ °íƯ¼º ½Å¿µ±¸ÀÚ¼®¼ÒÀç °³¹ßÀº ÇâÈÄ ¹Ì·¡»çȸÀÇ ¼ºÀ嵿·ÂÀ» ¾ÈÁ¤ÀûÀ¸·Î °ßÀÎÇϱâ À§ÇØ ±¹°¡Â÷¿ø¿¡¼­ Àü·«ÀûÀ¸·Î °³¹ßÇØ¾ß ÇÏ´Â ÇʼöÀûÀÎ °úÁ¦·Î¼­, ÇâÈÄ Àü±â/¼ö¼Ò ÀÚµ¿Â÷, ½Å°³³ä ÀüÀÚ ºÎÇ°, dz·Â, ÀÇ·á»ê¾÷ µî¿¡ ´ëÇÑ ¸·´ëÇÑ ÆıÞÈ¿°ú¸¦ °¡Áö°í ÀÖ´Ù.
º» ¿¬±¸¿¡¼­´Â ºñÈñÅä·ù°è ¿µ±¸ÀÚ¼® ÀÚ¼º¼ÒÀç ½ÅÁ¶¼º ¹× °øÁ¤ °³¹ß·Î ¼¼°èÃÖ°íÀÇ º¸ÀÚ·Â ¹× ÃÖ´ëÀڱ⿡³ÊÁöÀûÀ» ¾ò´Âµ¥ ¼º°øÇÏ¿´°í, ºñÈñÅä·ù°è ½ÅÁ¶¼º ÇÕ±ÝÀÇ ¿ª¿Âµµ ÀÇÁ¸¼ºÀ» ¼¼°èÃÖÃÊ·Î ¹ß°ßÇÏ¿´´Ù. ƯÈ÷ Mn°è ÇÕ±ÝÁß, Mn-Al°è ½Å¿µ±¸ÀÚ¼®¼ÒÀç¿¡ °í¾Ðº¯Çü°øÁ¤À» Àû¿ëÇÏ¿© ¼¼°èÃÖ°í º¸ÀÚ·ÂÀ» ´Þ¼ºÇÏ¿´À¸¸ç, Mn-Bi°è ÇÕ±Ý Á¦Á¶¿¡ °íÁøµ¿ ºÐ¸»Á¦Á¶ ½Å°øÁ¤À» °³¹ßÇÏ¿© ¼¼°èÃÖ°íÀÇ ÃÖ´ëÀڱ⿡³ÊÁöÀûÀ» °¡Áö´Â Mn-Bi°è ÇÕ±Ý ºÐ¸»À» Á¦Á¶Çϴµ¥ ¼º°øÇÏ¿´´Ù. ¶ÇÇÑ »ó¿Â¿¡¼­ ºÒ¾ÈÁ¤ÇÑ ±¸Á¶¸¦ °¡Áö±â ¶§¹®¿¡ ÀÌ·ÐÀûÀ¸·Î¸¸ Á¸ÀçÇÏ´ø Mn4C ÀÚ¼ººÐ¸»À» ³Ã°¢¼Óµµ Á¦¾î ½ÅÇÕ¼º °øÁ¤À» °³¹ßÇÏ¿© ¼¼°èÃÖÃÊ·Î ÇÕ¼ºÇÏ¿´°í, ÀÌ¿¡ New Diffraction Data¿¡ ½Å¹°Áú·Î µîÀ縦 ÇÏ¿´´Ù.
º» ¹ßÇ¥¿¡¼­´Â Áö±Ý±îÁö Çѱ¹Àç·á¿¬±¸¿ø¿¡¼­ ¿¬±¸ÇÑ »õ·Î¿î ºñÈñÅä·ù°è ¿µ±¸ÀÚ¼®Àç·áÀÇ Á¦Á¶°øÁ¤ ¹× ÀÚ±âÀû Ư¼º¿¡ °üÇØ ¹ßÇ¥ÇÏ°í, ÇâÈÄÀÇ ÁÖµÈ À̽´ ¹× ¹ßÀü¹æÇâ¿¡ ´ëÇؼ­µµ ³íÀÇÇÏ°íÀÚ ÇÑ´Ù.

2021³âµµ Çö¼Û°øÇлó ¼ö»óÀÚ

º¯Áö¿µ Ã¥ÀÓ¿¬±¸¿ø

Çѱ¹°úÇбâ¼ú¿¬±¸¿ø CV
4¿ù 28ÀÏ(¼ö) 15:05-15:30

±Ý¼ÓÇ¥¸é¿¡ ¼±¸íÇÑ ±¸Á¶»öÀ» ±¸ÇöÇϱâ À§ÇÑ ¿¬±¸
Generation of Vivid Structural Colors on Metal Surfaces

±Ý¼ÓÀº ¹Ý¦ÀÌ°í ºû³ª´Â ±¤Åà ¶§¹®¿¡ ¿¹ÀüºÎÅÍ Àå½Å±¸³ª ½Ä±â·Î ³Î¸® »ç¿ëµÇ¾î ¿Ô´Ù. ±Ý, Àº, µ¿, À¯±â, ½ºÅ×Àη¹½º °­ µîÀÌ ´ëÇ¥ÀûÀ¸·Î »ç¿ëµÇ´Â ±Ý¼Ó ¼ÒÀçÀÌ´Ù. ±Ý, ±¸¸®, À¯±â¸¦ Á¦¿ÜÇÏ°í´Â Àº, ½ºÅ×Àη¹½º °­, ¾Ë·ç¹Ì´½ µî°ú °°ÀÌ Àϻ󿡼­ »ç¿ëµÇ´Â ´ëºÎºÐÀÇ ±Ý¼Ó¼ÒÀç´Â ¹é»ö ¶Ç´Â ȸ¹é»öÀÇ ¹«Ã¤»öÀ» ³ªÅ¸³½´Ù. ´Ù¾çÇÑ »ö»óÀ» °¡Áö´Â ±Ý¼Ó, ƯÈ÷ ¹Ý¦ÀÌ°í ºû³ª´Â ±Ý¼Ó±¤ÅÃÀ» À¯ÁöÇϸ鼭 ¼±¸íÇÑ »ö»óÀ» ¹ßÇö½ÃÅ°´Â ±Ý¼Ó Ç¥¸éÀ» ¸¸µé ¼ö ÀÖ´Ù¸é ¿ÜÀåÀç, ³»ÀåÀç, °ø¿¹ »ê¾÷ µîÀ¸·ÎÀÇ ÆıÞÈ¿°ú´Â Áö´ëÇÒ °ÍÀ¸·Î ±â´ëµÈ´Ù.
º» ¹ßÇ¥¿¡¼­´Â ¹Ý¦ÀÌ°í ºû³ª´Â ±Ý¼Ó±¤ÅÃÀ» À¯ÁöÇϸ鼭 ¼±¸íÇÑ »ö»óÀ» Á¦°øÇÏ´Â ÃÖ±ÙÀÇ ¿¬±¸ µ¿Çâ ¹× º» ¿¬±¸½ÇÀÇ °á°ú¸¦ ¼Ò°³ÇÏ°íÀÚ ÇÑ´Ù. ´ëÇ¥ÀûÀÎ °ÍÀÌ Fabry-Perot Cavity¶ó ºÒ¸®¿ì´Â MIM (Metal-Insulator-Metal) ±¸Á¶¸¦ È°¿ëÇÏ´Â °ÍÀÌ´Ù. [±Ý¼Ó±âÆÇ]/[À¯Àüü¹Ú¸·]/[»óºÎ±Ý¼Ó¹Ú¸·]ÀÇ ±¸Á¶¸¦ °¡Áö¸ç ƯÁ¤ ÆÄÀåÀÇ ºûÀ» Èí¼öÇϱ⠶§¹®¿¡ ¼±¸íÇÑ »ö»óÀ» Á¦°øÇÒ ¼ö Àִ Ư¡ÀÌ ÀÖ´Ù. À¯Àüü¿Í ±Ý¼ÓÀÇ Á¾·ù ¹× µÎ²²¸¦ º¯È­½ÃÅ°¸é ´Ù¾çÇÑ »ö»óÀ» ¹ßÇöÇÒ ¼ö ÀÖ°Ô µÈ´Ù. ÀÚ¼¼ÇÑ ³»¿ëÀº ¹ßÇ¥¿¡¼­ ´Ù·ç°íÀÚ ÇÑ´Ù.

2021³âµµ ±â¼ú»ó ¼ö»óÀÚ

À±ÁöÇö Ã¥ÀÓ¿¬±¸¿ø

Çѱ¹¿øÀڷ¿¬±¸¿ø CV
4¿ù 29ÀÏ(¸ñ) 10:25-10:50

¿øÀÚ·Î ÀÌÁ¾±Ý¼Ó¿ëÁ¢ºÎ ÆļչæÁö¸¦ À§ÇÑ ÀûÃþÁ¦Á¶±â¼úÀÇ Àû¿ë

¿øÀÚ·ÎÀÇ ´ëºÎºÐÀÇ ºÎÇ°Àº »ç¿ë¸ñÀû ¹× ȯ°æ¿¡ µû¶ó ¿©·¯ °¡Áö ´Ù¸¥ °­Á¾À¸·Î Á¦ÀÛµÊÀ¸·Î ÀÎÇØ ¿øÀÚ·Î ³»¿¡´Â ÇÊ¿¬ÀûÀ¸·Î ´Ù¼öÀÇ ÀÌÁ¾±Ý¼Ó¿ëÁ¢ºÎ°¡ Á¸ÀçÇÑ´Ù. ÀÌÁ¾±Ý¼Ó¿ëÁ¢ºÎ¿¡´Â Àç·á¹°¼ºÀÇ Â÷ÀÌ¿¡ ±âÀÎÇÑ ÀÜ·ùÀÀ·ÂÀÌ ¹ß»ýÇÏ¿© PWSCC (Primary Water Stress Corrosion Cracking) ÆļÕÀÌ ¹ß»ýÇÒ °¡´É¼ºÀÌ ³ô´Ù. PWSCC¿¡ ÀÇÇÑ ¹æ»ç¼º ³Ã°¢¼ö ´©¼ö µîÀÇ »ç°í°¡ Àü ¼¼°èÀûÀ¸·Î ´Ù¼ö º¸°í µÇ¾î ¿øÀÚ·Â ¾ÈÀü¿¡ Å« À§ÇùÀÌ µÇ¾î¿Ô´Ù. ÀÌÁ¾±Ý¼Ó ¿ëÁ¢ºÎÀÇ ÀÜ·ùÀÀ·ÂÀ» ¿ÏÈ­½ÃÅ°±â À§ÇÑ ´Ù¾çÇÑ ¹æ¹ýÀÌ ½ÃµµµÇ¾î ¿ÔÀ¸³ª ÇöÀç±îÁö ±Ùº»ÀûÀÎ ÇØ°áÃ¥Àº ¾ø´Â ½ÇÁ¤ÀÌ´Ù.
±¹Á¦ÀûÀ¸·Î 4Â÷ »ê¾÷Çõ¸í ½Ã´ë¸¦ ¼±µµÇϱâ À§ÇÑ °æÀïÀÌ ½ÉÈ­µÇ°í ÀÖ´Â °¡¿îµ¥, 4Â÷ »ê¾÷Çõ¸íÀÇ Çٽɱâ¼ú Áß ÇϳªÀÎ 3D ÇÁ¸°Æà ±â¼úÀÌ °ý¸ñÇÒ¸¸ÇÑ ¹ßÀüÀ» ÀÌ·ç°í ÀÖ´Ù. ¿øÀڷ°迡¼­µµ 3D ÇÁ¸°Æà ±â¼úÀ» È°¿ëÇÑ ¿øÀÚ·Â±Þ ºÎÇ°ÀÇ °³¹ßÀÌ ¹Ì±¹À» ºñ·ÔÇÑ ¿©·¯ ³ª¶ó¿¡¼­ È°¹ßÈ÷ ÁøÇàµÇ°í ÀÖÀ¸¸ç 3D ÇÁ¸°Æà ºÎÇ°ÀÇ ÀåÁ¡À» È°¿ëÇÏ¿© ±âÁ¸ ¿øÀÚ·ÎÀÇ ¾ÈÀü¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ±â¼úÀû ȯ°æÀÌ ±Þ¼ÓÈ÷ Á¶¼ºµÇ°í ÀÖ´Ù.
´ëºÎºÐÀÇ ¿øÀÚ·Î ÀÌÁ¾±Ý¼Ó¿ëÁ¢ºÎ´Â ÀúÇձݰ­ ºÎÇ°°ú ½ºÅ×Àθ®½º°­ ¹è°üÀÇ ¿¬°á ºÎÀ§ÀÌ´Ù. µû¶ó¼­ º» ¿¬±¸¿¡¼­´Â 3D ÇÁ¸°Æà ±â¹ýÀ» ÀÌ¿ëÇÏ¿© ÀúÇձݰ­/½ºÅ×Àθ®½º°­ °æ»ç±â´ÉÀç·á(Functionally graded material, FGM) ¸¦ Á¦Á¶ÇÏ¿© ±âÁ¸ ÀÌÁ¾±Ý¼Ó ¿ëÁ¢ºÎÀ§¸¦ ¿¬°áÇÔÀ¸·Î½á ¿øõÀûÀ¸·Î ÀÌÁ¾±Ý¼Ó ¿ëÁ¢ºÎ¸¦ Á¦°ÅÇÒ ¼ö ÀÖ´Â ±â¼úÀ» °³¹ßÄÚÀÚ ÇÏ¿´´Ù.
Àü»ê»óÆòÇü °è»êÀ» ÅëÇØ ÇձݺñÀ²ÀÌ ´Ù¸¥ 5°³ÃþÀÇ ÀúÇձݰ­/½ºÅ×Àθ®½º°­ °æ»ç±â´ÉÀç·á¸¦ ¼³°èÇÑ¿© DED (Direct energy deposition) ¹æ½ÄÀÇ 3D ÇÁ¸°ÅÍ·Î ÀûÃþÇÏ¿´´Ù. °æ»ç±â´ÉÀç·áÀÇ ¼®Ãâ»óÀ» ºñ·ÔÇÑ ¹Ì¼¼Á¶Á÷À» ÀüÀÚÇö¹Ì°æÀ» ÀÌ¿ëÇÏ¿© °üÂûÇÏ¿´À¸¸ç ¿­ÆØâ °è¼ö ¹× ÀûÃþºÎ Ãþ°£ ¹× Ãþ³»ÀÇ ÀÎÀåƯ¼º µîÀÇ ¹°¼ºÀ» Æò°¡ÇÏ¿´´Ù. ¶ÇÇÑ ½ÇÇü»ó mock-upÀ» Á¦ÀÛÇÏ¿© ÀÜ·ùÀÀ·Â ºÐÆ÷¸¦ ÃøÁ¤ÇÏ¿´À¸¸ç °æ¼ö·Î 1Â÷¼ö ȯ°æ¿¡¼­ PWSCC Ư¼ºÀ» Æò°¡Çϱâ À§ÇÑ ¿¬±¸¸¦ ÁøÇà ÁßÀÌ´Ù.

2021³âµµ ±â¼ú»ó ¼ö»óÀÚ

ÀÌÁ¤¹« Ã¥ÀÓ¿¬±¸¿ø

Çѱ¹Àç·á¿¬±¸¿ø CV
4¿ù 28ÀÏ(¼ö) 13:30-13:55

¾Ë·ç¹Ì´½ ÇÕ±ÝÀÇ ÃÊÀ½ÆÄ ¿ëÅÁó¸® ±â¼ú

¾Ë·ç¹Ì´½ ÇÕ±ÝÀº ÁÖÁ¶¼º°ú °¡°ø¼ºÀÌ ÁÁ°í, ³ôÀº ºñ°­µµ ¹× ÀçÈ°¿ë¼ºÀ¸·Î °æ·®±Ý¼Ó¼ÒÀç Áß¿¡¼­ »ê¾÷ÀûÀ¸·Î °¡Àå ³Î¸® »ç¿ëµÇ´Â ¼ÒÀçÁßÀÇ ÇϳªÀÌ´Ù. ¾Ë·ç¹Ì´½ ÇÕ±ÝÀº¼ö¼Û±â±â °æ·®È­ÀÇ ÇٽɼÒÀç·Î ÀνĵǾî ÀÚµ¿Â÷ µî¿¡¼­ÀÇ »ç¿ë·®ÀÌ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÏ°í ÀÖÀ¸¸ç, ÀÌ¿¡ µû¶ó ¼ÒÀçÀÇ Æ¯¼º Çâ»ó ¹× Á¦Á¶°øÁ¤ È¿À²È­¿¡ ´ëÇÑ ±â¼ú °³¹ßÀÌ È°¹ßÇÏ°Ô ÁøÇàµÇ°í ÀÖ´Ù. ÃÖ±Ù ¾ö°ÝÇØÁø ȯ°æ±ÔÁ¦·Î ÀÎÇÑ ¼ö¼Û±â±â °æ·®È­ ¿ä±¸¿¡ µû¶ó º¸´Ù ¿ì¼öÇÑ Æ¯¼ºÀ» °®´Â ¾Ë·ç¹Ì´½ ÇÕ±Ý °³¹ßÀÌ ¿ä±¸µÇ°í Àִµ¥, Çձݿø¼Ò ÷°¡, ÀÀ°í ÁßÀÇ ³Ã°¢ ¼Óµµ Á¦¾î, ¿ëÅÁÁß ±â°èÀû ¿¡³ÊÁö Àΰ¡ µî ´Ù¾çÇÑ ¿¬±¸/°³¹ßÀÌ ¼öÇàµÇ°í ÀÖ´Ù.
ÃÊÀ½ÆÄ ¿ëÅÁ󸮴 ±â°èÀû¿¡³ÊÁö Àΰ¡ ¹æ¹ý ÁßÀÇ ÇϳªÀε¥, Åë»óÀûÀ¸·Î 15 kHz ÀÌ»óÀÇ ÃÊÀ½Æĸ¦ ¿ëÅÁ¿¡ ÁÖ»çÇÏ¿© ¿ëÅÁ ³»ºÎ¿¡¼­ ijºñÅ×À̼Ç(cavitation)°ú À½ÇâÀ¯µ¿(acoustic streaming)À» ¹ß»ý½ÃÅ°´Â ±â¼ú·Î, ¾Ë·ç¹Ì´½ÀÇ ÁÖÁ¶°áÇÔÀ» ÁÙÀÌ°í, ÁÖÁ¶Á¶Á÷À» ¹Ì¼¼ÇÏ°í ±ÕÀÏÇÏ°Ô ÇÏ´Â È¿°ú°¡ ÀÖ´Ù. ÃÊÀ½ÆÄ ¿ëÅÁ󸮿¡ ÀÇÇÑ °áÇÔ ¹× Á¶Á÷ Á¦¾î´Â ¾Ë·ç¹Ì´½ ¼ÒÀçÀÇ ±â°èÀû Ư¼º ¹× ÁÖÁ¶¼º, ±×¸®°í °¡°ø¼ºÀ» Çâ»ó½ÃŲ´Ù. ÁÖÁ¶ Á¶Á÷ Á¦¾î, Ư¼º °³¼± È¿°ú¿Í ´õºÒ¾î ³ôÀº ¿¡³ÊÁöÈ¿À² ¹× ģȯ°æ¼ºÀ¸·Î ÀÎÇØ ÃÊÀ½ÆÄ ¿ëÅÁ󸮴 ´Ù¾çÇÑ ¾Ë·ç¹Ì´½ ÇÕ±Ý ¹× ¾Ë·ç¹Ì´½ ±âÁö º¹ÇÕÀç Á¦Á¶¿¡ »ç¿ëµÇ°í ÀÖ´Ù. ÃÊÀ½ÆÄ ¿ëÅÁ󸮴 Á¤ÇüÁÖÁ¶»Ó¸¸ ¾Æ´Ï¶ó ¿¬¼ÓÁÖÁ¶ °øÁ¤¿¡µµ Àû¿ëµÇ°í ÀÖÀ¸¸ç, ÃÖ±Ù¿¡´Â ¸¶Âû±³¹Ý¿ëÁ¢ ¹× ÀûÃþÁ¦Á¶ °øÁ¤¿¡µµ È°¿ëµÇ°í ÀÖ´Ù.
º» ¹ßÇ¥¿¡¼­´Â ÃÊÀ½ÆÄ ¿ëÅÁ󸮽à ¾×»ó¿¡¼­ ¹ß»ýÇϴ ijºñÅ×À̼ǰú À½ÇâÀ¯µ¿ Çö»óÀ» ¼Ò°³ÇÑ µÚ, ÃÊÀ½ÆÄ ¿ëÅÁó¸®ÀÇ ÁÖ¿äÇÑ È¿°úÀÎ ¾Ë·ç¹Ì´½ ¿ëÅÁÀÇ Å»°¡½º, ÀÔÀÚ Å»ÀÀÁý, Á¶Á÷ ¹Ì¼¼È­ Çö»ó ¹× ÀÌ¿¡ µû¸¥ ÁÖÁ¶ÀçÀÇ Æ¯¼º º¯È­¸¦ Àç·á°øÇÐÀû °üÁ¡¿¡¼­ »ìÆ캸°íÀÚ ÇÑ´Ù. ¸¶Áö¸·À¸·Î ¾Ë·ç¹Ì´½ ÁÖÁ¶»ê¾÷¿¡¼­ ÃÊÀ½ÆÄ ¿ëÅÁó¸® ±â¼úÀÇ È®´ë Àû¿ëÀ» À§ÇÑ ¹®Á¦Á¡ ¹× ÀÌÀÇ ÇØ°á ¹æ¾È¿¡ ´ëÇؼ­ °ËÅäÇÏ¿´´Ù.

2021³âµµ POSCO ÀþÀºÃ¶°­»ó ¼ö»óÀÚ

±èÁø°æ ±³¼ö

ÇѾç´ëÇб³ CV
4¿ù 29ÀÏ(¸ñ) 13:10-13:35

Fundamental deformation mechanisms of austenite and their impact on mechanical properties of advanced high strength steels

Current microstructural design of advanced high strength steels greatly utilizes austenite phase. Austenite phase in steels largely affects strain hardening of steels by activating various plasticity enhancing mechanisms such as deformation twinning and deformation-induced martensitic transformation. The activation of the various deformation mechanisms is greatly influenced by stacking fault energy. The stacking fault energy of austenite can be tuned by alloying. This presentation introduces research on strain hardening engineering of austenite in advanced high strength steels such as high Mn twinning-induced plasticity steels and medium Mn steels. In-depth multiscale microstructural analysis, measurement of stacking fault energy, nanomechanical testing and constitutive modeling were conducted to understand the microstructure-mechanical properties relationship of high/medium Mn steels. Understanding complex microstructures and deformation mechanisms in steels enables knowledge-based design of novel advanced high strength steels with exceptional mechanical properties.